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Abstract. The task addressed here is a dynamic search through a bound- 
ed region, while avoiding multiple large obstacles, such as buildings. In 
the case of limited sensors and communication, maintaining spatial cov- 
erage - especially after passing the obstacles - is a challenging problem. 
Here, we investigate two physics-based approaches to solving this task 
with multiple simulated mobile robots, one based on artificial forces and 
the other based on the kinetic theory of gases. The desired behavior is 
achieved with both methods, and a comparison is made between them. 
Because both approaches are physics-based, formal assurances about the 
multi-robot behavior are straightforward, and are included in the paper. 

1 The Sweeping and Obstacle Avoidance Task 

The task being addressed is that of sweeping a large group of mobile robots 
through a long bounded region (a swath of land, a corridor in a building, a 
city sector, or an underground passageway/tunnel), to perform a search, Le., 
surveillance. This requires maximum coverage. The robots (also called “agents”) 
are assumed to lack any active communication capability (e.g., for stealth), and 
to  have a limited sensing range for detecting other agents/objects. It is assumed 
that robots near the corridor boundaries can detect these boundaries, and that 
all robots can sense the global direction that they are to move. As they move, 
the robots need to avoid large obstacles (e.g., buildings). This search might be 
for enemy mines, survivors of a collapsed building or, alternatively, the robots 
might be patrolling the area. It is assumed that the robots need to  keep moving, 
because there are not enough of them to view the entire length of the region 
at once. In other words, the robots begin scattered randomly at one end of the 
corridor and move to the opposite end (considered the goal direction). This is a 
“sweep.” Once the robots get to the far end of the corridor, they reverse their 
goal direction and sweep again. Finally, if stealth is an issue then we would 
like the individual robot movements to be unpredictable to  adversaries. It is 
conjectured that the behavior of a gas is most appropriate for solving this task, 
Le., each robot is modeled as a gas particle. ‘ 



2 Prior Approaches 

There are many Merent  methods for controlling groups of autonomous agents 
(swarms). Bald and Arkin [l] present a very popular approach - using behavior- 
based techniques. Behavior-based control uses a layered architecture based on 
arbitration between a suite of behaviors, such as avoidance, exploration, and 
planning. &thou& this technique has been successful in maintaining agent for- 
mations while going around obstacles, unfortunately it requires a lot of active 
communication and, typically, it requires small groups of heterogeneous agents 
that have prespecified roles. Fredslund and Matarit [Z] present another behavior 
based technique using local interactions to create formations and avoid obstacles. 
This approach has already been ported to  robots and experimental results show 
itssuccesses at avoiding obstacles that are roughly the same size as the robots 
themselves. However, no solution is presented for the challenging case where the 
obstacle is the size of a city building. 

Other research uses ethological models such as ants or bees to control the 
robots. In one such study [3], agents are modeled as individual ants in the colony. 
In this study, the robots leave long-term traces in the environment and require 
directed graphs to be imposed onto the terrain. 

The approaches to  swarm control that are of interest to us are rooted in 
physics. Spears and Gordon [4] have provided a technique called physiwmimet- 
ics for controlling large groups of agents (modeled as particles), using virtual 
physics-based forces to move the agents into a desired formation, e.g., a hexag- 
onal lattice. This technique scales well to large groups of agents and uses only 
local interactions. Using physicomimetics, agent swarms do a very nice job of 
staying in formation and avoiding obstacles, without the need for active corn- 
munication, long-range sensing, or prespecified roles [5]. Nevertheless, a problem 
still exists when the agents are presented with a very large obstacle, e.g., a build- 
ing in a city. As the agents move around the obstacle, they are unable to detect 
the agents that have chosen to  move around the other side of the obstacle. Be- 
cause of this, they are never able to regroup and leave an exposed and uncovered 
area downstream of the obstacle. The problem is that physicomimetics has tra- 
ditionally been run in a mode that mimics the behavior of a crystalline solid. 
Yet solids are rigid and do not expand to fill/cover a region. This is the reason 
for investigating a gas approach to  physicomimetics. The approach of Decuyper 
and Keymeden [SI shows that a fluid metaphor works for solving arbitrarily 
romplex mazes. The idea behind this research is that particles in a fluid auto- 
matically adapt to changes in the environment because of the fluid’s dynarmcs. 
The research of Decuyper and Keymeulen has proven that the fluid metaphor is 
effective, but their approach requires a global grid in order to compute the fluid 
flow through the system. Our research, on the other hand, applies this same fluid 
metaphor, but using only la1 interactions. 



3 Motivation for Gas Models 

Both liquids and gases are considered fluids, but this paper focuses on gases. 
Gases offer excellent coverage, unpredictability of particle locations, and they 
can be bounded. In general, fluids (gases and liquids) are able to take the shape of 
their container and therefore are well suited to avoiding obstacles. Fluids are also 
capable of squeezing through narrow passages and then resuming full coverage 
when the passage expands. With gases, if we model a container, the gas will 
eventually diffuse throughout the container until it reaches an asymptotic state. 
Because gases have this property but liquids do not, gases are a more natural 
way to think of how to get particles around an obstacle, and why we chose to 
model a gas. Once the particles have moved around an obstacle, fluids have the 
ability to regroup. For example, consider releasing a gas from a container at the 
top of a room with obstacles. The gas inside the container is slightly heavier than 
the surrounding air. As the gas slowly falls to  the ground, i t  separates around 
obstacles and 'expands back to cover areas under the obstacles. 

Agents capable of mimicking fluid flow will be successful at avoiding obstacles 
and moving around them quickly. By mimicking gas flow in particular, the agents 
will be able to distribute themselves throughout the volume once they have 
navigated around the obstacle. 

This article presents two formal gas models to solve the problem described 
above, and then compares them. The first approach is physicomimetics, also 
called artificial physics (AP). The second is kinetic theory (KT), which models 
virtual inter-particle and particle-wall collisions. Both of these approaches are 
amenable to straightforward physics analyses for providing behavioral assurances 
of the robot collective [7], [8]. 

4 The Physicomimetics Approach 

Spears and Gordon [4] have created the artificial physics (AP) framework to  
control groups of autonomous agents. The goal of AP is one of reducing the 
potential energy of a system. Each agent in the system experiences a repulsive 
force ftom other agents that are too close, and an attractive force from other 
agents that are too far away. These forces, which are based on Newtonian physics, 
do not really exist in a physical sense, but the agents react to them as if they were 
real. Each agent can be described by a position vector x and a velocity vector 
v. Time is maintained with the scalar variable t. The simulation can be run in 
either 2D or 3D (to model swarms of micro-air vehicles). Agents in the system 
update their position, x, in discrete time steps, At. At each time step, each 
agent updates its velocity, v, based on the vector sum (resultant) of all forces 
exerted on it by the environment, which includes other agents within visibility 
range, as well as repulsive forces from obstacles and attractive forces from goals. 
This velocity, v, determines Ax, i.e., the next move of the agent. In particular, 
at each time step, the position of each particle undergoes a perturbation Az. 
This perturbation depends on the current velocity, i.e., Ax = vAt. The velocity 



of each particle at each time step also changes by Av. The change in velocity 
is controlled by the force on the particle, i.e., Av = FAt/m, where m is the 
mass of that particle and F is the force on that particle. Note that this is the 
standard, Newtonian F = mu equation. 

By setting system parameters in AP, we can mimic solid, liquid, or gas states, 
as well as phase transitions between these states [7)- Traditionally, AP models a 
solid. To model a gas with AP, all agents experience purely repulsive forces from 
other agents as well a s  from obstacles and the side boundaries of the ~ o r r i d o r . ~  
Although AP was not designed to  be an exact model of a gas, we have found 
that its behavior does a good job of mimicking a gas. 

5 The Kinetic Theory Approach 

There are two main methods for modeling fluids: the Eulerian approach, which 
models the fluid from the perspective of a finite volume fixed in space through 
which the fluid flows (typically the method of computational fluid dynamics), and 
the Lagrangian approach, in which the frame of reference moves with the fluid 
volume (typically the kinetic theory approach) [9]. Because we are constructing 
a model from the perspective of the agents, we choose the latter. Kinetic theory 
(KT) is typically applied to  plasmas or gases, and here we model a gas. This 
overview of KT borrows heavily from Garcia [lo]. 

When modeling a gas, the number of particles is problematic, Le., in a gas 
at standard temperature and pressure there are 2.687 x particles in a cubic 
centimeter. A typical solution is to employ a stochastic model that calculates and 
updates the probabilities of where the particles are and what their velocities are. 
This is the basis of KT. One+dvantage of this model is that it enables us to  make 
stochastic predictions, such as the  average behavior of the ensemble. The second 
advantage is that with real robots, we can implement this_ with probabilistic 
robot actions, thereby avoiding predictability of the individual agent. 

In KT, particles are treated as possessing no potential energy (i.e., an ideal 
gas), and collisions with other particles are modeled as purely elastic collisions 
that maintain conservation of momentum. Using some of the formulas for ki- 
netic theory, we can obtain useful properties of the system. If we allow k to  be 
Boltzmann’s constant, such that k = 1.38 x J/K, m to be the mass of 
the particle, and T to  be the temperature of the system, then we can deiine the 
average speed of any given particle (in 3D) as, 

where f(v) is the probability density function for speed. 

particles: 
Another property we can define for KT’ is the average kiueiic eiieigy- of the 
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(K) = (?mu2) 2 = 3kT 2 

A hictional force is also included in the AP solid model, but is excluded in gas Ap. 



Using KT,  we are able to model different types of fluid flow. For our simula- 
tions, we modeled 2D Couette flow. The original code for this one-sided Couette 
flow is a translation of code from Garcia [IO] to the Java programming language. 
Figure 1 shows a schematic for this one-sided Couette flow, where we have a 
fluid moving between two walls - one wall moving with velocity vWazz, and the 
other stationary. Because the fluid is a Newtonian fluid and has viscosity, we see 
a linear velocity profile across the system. Fluid deformation occurs because of 
the sheer stress 7, and wall velocity is transferred because of molecular friction 
on the particles that strike the wall. On the other hand, the particles that strike 
the non-moving wall will transfer some of their velocity to it. This does not 
cause the wall to move, since in a Couette flow the walls are assumed to have 
infinite length and therefore infinite mass. We chose a Couette flow so that we 
can introduce energy into the system and give the particles a direction to move. 
This effect is similar to AP modeling a goal force. 

Fig. 1. Schematic for a Couette flow 

The main differences between AP and K T  are: (1) AP deals with forces. KT 
deals only with the resulting velocity vectors. (2) With the current force law used 
by  AP, interactions are “soft collisions,” i.e., repulsive forces cause small devi- 
ations in agent velocities. In  K T ,  collisions cause radical, probabilistic changes 
in agent velocities. (3) For a given set of starting locations, AP is deterministic, 
whereas KT is stochastic. 

6 Implementation 

We created a 2D simulation world with a pair of corridor walls (which can be 
considered Couette walls), obstacles, and agents (modeled as gas particles). The 
fluid flow is unsteady with no turbulence, i.e., unsteady laminar flow. 

First, we describe our AP gas approach, in which motion is due to  attractive 
and repulsive forces. Recall that AP uses virtual Newtonian force laws. The force 
law used is: 

(1) 
Gmlm2 F = IF1 = ~ 

r2 



where G is a gravitational constant4, ml and m2 are the masses, and T is the 
distance between the agent and another objectlagent. For a robotic implementa- 
tion, there is a maximum possible force, F,,, Le., F 5 F,,, always. The value 
of Fmaz used in our simulations is 1.5. The parameter G is set at  initialization of 
the program. To maintain a desired distance, R, between agents in an AP solid, 
this force is repulsive if T < R and attractive if r > R. For an AP gas, the force 
is always repulsive. Each agent has one sensor to detect the range and bearing to 
nearby agents, and one effector to move with velocity v. To make the simulation 
a realistic model of robots, agents c m  only detect other agents/objects within a 
limited range, namely, 1.5R. Our implementation assumes R = 50. 

The corridor and obstacle wall forces are purely repulsive. For AP, the large- 
scale fluid motion is driven by an attractive goal force a t  one end of the corridor. 
Different force constants, G, are allowable for inter-agent forces and agent-wall 
forces. However, this paper assumes the same G, namely, 1,200. Note that if the 
forces for avoidance of an obstacle are equal to the attractive forces felt by the 
goal, the particles reach a stagnation point at the intersection with the obstacle 
- because all of the forces felt by the particle are in balance. To overcome this 
situation, when a particle experiences a repulsive force &om an obstacle or wall 
that is the same in magnitude but in the opposite direction of the goal force, the 
particle translates this into a tangential repulsive force. When choosing an angle 
for the tangential force we must be careful to keep the particle horn reaching 
a stagnation point and keep the particle from moving through the obstacle. 
Rotating the angle by 45" produces this result nicely. In particular, if the angle 
of the force is 180" then the angle for this force becomes 135" or 225", depending 
on the direction chosen by the robot. 

In parallel with the Ap approach, we have also implemented the KT a p  
p r o d .  Our KT approach models a modified (two-sided) Couette ffow in which 
both Couette walls are moving in the same direction with the same speed. We 
invented this variant as a means of propelling all agents in a desired general 
direction, Le., the large-scale fluid motion becomes that of the walls. Particle ve- 
locities st& randomly and remain constant, unless collisions occur. (Note that 
with actual robots, collisions would be virtual, Le., they would be considered to 
occur when the agents get too close. Wall motion would also be virtual.) The 
system updates the world in discrete time steps, At. We choose these time steps 
to occur on the order of the mean collision time for any given agent. Each agent 
can be described by a position vector x and a velocity vector v. At each time 
step, the position of every agent is reset based on how far it could move in the 
given time step and its current velocity: 

x + - x + v A t  . 
- 
lnis is done for every agent iii the ,-,.stc=, a d  pcsitic?~~. zre updated re- 

gardless of walls and obstacles as well as other agents. Once the current agent's 
position has been updated, a check is performed to see if that agent has moved 

~~ 

* G is not related to actual gravity (which is purely attractive), but is a force constant 
used in the system. 



through a wall (including an obstacle wall), in which case the position needs to 
be reset as if a collision occurred. If the agent strikes a moving,wall, then some 
of the energy from the wall is transferred to  the agent. This effect models the 
molecular friction of the fluid and speeds up the agent. The agent’s position is 
reset as a biased Maxwellian distribution, based on where the agent strlkes the 
wall and how far the agent would have been able to move if the wall were not 
there. On actual robots, wall collision detection will be done prior to moving. If 
the robot will intersect with the wall on its next move, then it determines its new 
position based on a collision, rather than actually colliding with the wall. Once 
all agents have moved and their positions have been reset based on collisions 
with the walls, inter-agent collisions are processed. The number of collisions in 
any given region is a stochastic function of the number of agents in that region 
(see [lo] for details). This process continues indefinitely or until a desired state 
has been reached. 

We have just described the K T  approach to modeling Couette flow, modi- 
fied with a two-sided Couette. We next introduce obstacles into the world, and 
consider different methods for modeling interactions with obstacle walls. 

For one, we could use a K T  approach that treats the obstacle boundaries as 
stationary walls, and processes collisions the same as is done with Couette walls. 
Unfortunately, in the pure KT approach, agents do not perceive the location of 
an obstacle until they have collided with it. When colliding with an obstacle, 
the velocity of the particle off the obstacle is distributed Maxwellian in the goal 
direction and Gaussian in the lateral direction (i.e., orthogonal to the longitudi- 
nal goal direction). This produces excellent results when steady state is reached. 
A problem arises, however, since we are not modeling a steady state fluid flow. 
If we were given a steady flow, agents in the system would collide with other 
agents coming down the flow and through collisions would be pushed around 
the obstacle. Since flow is unsteady, one of the last agents in the system (Le., 
upstream from all the other agents) could strike an obstacle and end up going 
in the opposite direction with no mechanism to turn it around. 

The traditional AP (solid) approach to obstacle avoidance does extremely 
well at navigating around obstacles. Unfortunately, the AP solid approach does 
not maintain a good coverage of the environment once the particles have navi- 
gated around the obstacle. Figure 2 shows this in simulation. However, the AP 
gas approach (with repulsion only) is able to navigate around obstacles and re- 
tain good coverage, see Fig. 2. A question remains, nonetheless, as to whether 
we could do even better by combining AP and KT. 

To address this question, we created a hybrid AP/KT algorithm, in which 
wall collisions generate largescale motion, AP repulsive forces enable obstacle 
avoidance, and K T  is responsible for agent-agent interactions. By treating the 
obstacle as a repulsive force, the agents softly bounce off the obstacle walls. This 
force causes the agent to turn, thereby allowing more particles to  make it around 
the obstacle. Since the particles turn softly, they are more likely to hit one of the 
moving walls and continue in the direction of the flow until they have made it 
around the obstacle. We are able to achieve an even distribution of particles past 
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Fig. 2. AP controllers perform a sweep. A .  AF' solid B. AP gas 



the obstacle with this hybrid, as well as increase the number of particles that 
make it past in a shorter amount of time. Figure 3 shows the hybrid approach. 
Note that numerous alternative hybrids of AP and KT are possible; investigation 
of these others will be a topic for future research. 
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Fig. 3. K T  controllers perform a sweep. A .  KT B. AP/KT hybrid 

7 Experimental Results 

To discover the strengths and weaknesses of each of our four methods (AP solid, 
AP gas, KT gas, and the AP/KT gas hybrid), we ran numerous empirical ex- 
periments with the simulator. Typical results are shown in Figures 2 and 3. 
In these figure, particles begin at the top and move to  the bottom (which is the 
goal direction). The y-axis is vertical and the z-axis is horizontal. Our starting 



point was the AP solid approach to obstacle avoidance. Agent formations stayed 
intact with this approach, but coverage was very poor. AP gas yielded results 
far better than AP solid for coverage behind the obstacles (Fig. 2). 

Like AP gas, pure KT has yielded excellent coverage. However, problems 
arose with KT because of the unsteady fluid flow, as  discussed above. Fwther- 
more, because of the unsteady nature of the flow, it typically took longer for the 
entire group of KT particles to get around all of the obstacles (if they were able 
to do so) than for AP particles to get around the obstacles. 

Recall that the hybrid AP/KT approach avoids stagnation points. Other 
dficulties arise for the AP/KT method. One difiiculty arises when two obstacles 
are very close together, Le., sufficiently close that the forces exerted from them 
are able to  dominate the goal forces and inter-particle forces. This leaves us with 
unexplored areas inside our corridor of obstacles (Fig. 4). All methods using 
force laws had problems dealing with this situation. 

Fig. 4. Obstacle field that has a na.rrow corridor within. The force-based methods will 
be unable to explore this area 

We have also encountered another potential problem for the KT approaches. 
The problem does not appear to be due to  agent-agent interactions. Rather, 
the problem &es when trying to address both the large-scale movement and 
avoidance of multiple obstacles. We notice this when the obstacle density is 
increased between the walls. Because the K T  methods use collisions with Couette 
walls for propulsion in a goal direction, the width of the region between these 
walls determines the coverage of the world. In particular, if the walls contain a 
group of obstacles several layers abreast, we cannot guarantee that the central 
region of the Couette, far from the walls, wdl be covered by the agents. The pure 
AP models do not have this problem. 

In summary, AP solid has very poor coverage, whereas all of the gas models 
produce excellent coverage, which reaffirms our motivation for choosing gas mod- 
els. AP and AP/KT hybrid are better than K T  for navigating around obstacles, 
although they have greater difEculty navigating through narrow corridors. 



8 Theoretical Predictions 

One of the key benefits of using a physics-based multi-agent system is that exten- 
sive theoretical (formal) analysis tools already exist for making predictions and 
guarantees about the behavior of the system. Furthermore, such analyses have 
the added benefit that their results can be used for setting system parameters 
for achieving desired multi-agent behavior. The advantages of this are enormous 
- one can transition directly from theory to a successful robot demo, without 
all the usual parameter tweaking. For an example of such a success (using AP 
solid), see [5]. To demonstrate the feasibility of applying physics-based analysis 
techniques to  physics-based systems, we make predictions that support some of 
our claims regarding the suitability of gas models for our surveillance task. 

Before describing the experiments, let us first present the metric used for 
measuring error between the theoretical predictions and the simulation results. 
Relative error is used, which is defined as: 

1 theoretical - actual I 
theoretical 

For each experiment, one parameter was perturbed (eight different values of the 
affected parameter were chosen). For each parameter value, 20 different runs 
through the simulator were executed, each with different random initial agent 
positions and velocities. The average relative error (over the 20 runs) and the 
standard deviation from the average were determined from this sample. 

Next, consider the experiments. Recall that our objectives are to sweep a 
corridor and to avoid obstacles along the way. A third objective for the s w a m  
of agents is that of coverage. We define two types of coverage: longitudinal (in 
the goal direction) and lateral (orthogonal to the goal direction). Longitudinal 
coverage can be achieved by movement of the swarm in the goal direction; lat- 
eral coverage can be achieved by a uniform spatial distribution of the robots 
between the side walls. The objective of the surveillance task is t o  maximize 
both longitudinal and lateral coverage in the minimum possible time. The num- 
ber of particles, initial distribution of particles, and termination criterion are 
determined individually for each experiment, based on earlier studies. 

To measure how well the robots achieve the task objective, we observe: 

1. The distribution of velocities of all agents in the corridor. This is a 
measure of both sweep time and total coverage (i.e., a wide distri- 
bution typically implies greater coverage of the corridor length and 
width). 

2. The degree to which the spatial distribution of the robots matches 
a uniform distribution. This is a measure of lateral coverage of the 
corridor 

3. The average agent speed (averaged over all agents in the corridor). 
This is a measure of total coverage. 

Measurement of each of these three aspects of the system (velocity distribution, 
spatial distribution, average speed) corresponds to each of our three experiments. 
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Recall (above) that for each experiment, we vary the value of one parameter. The 
reason for varying such parameter values is to allow a system designer to optimize 
the design - by understanding the tradeoff3 involved. In other words, we have 
observed that there is a tradeoff between the degrees of longitudinal coverage, 
lateral coverage, and sweep speed - greater satisfaction of one can lead to reduced 
satisfaction of the others, making this a Pareto-optimization task. By varying 
parameter values and showing the resdting velocity and spatial distributions 
and average speed, a system designer can choose the parameter values that 
yield desired system performance. Finally, why show both theory and simulation 
results for each experiment and each parameter value? Our rational& is that it 
is far easier for a system designer to  work with the theory when deciding what 
parameter values to choose for the system. The designer can do this if the theory 
is predictive of the system. In our experimental results below, we show that the 
theory is indeed predictive of experimental results using our simulation. 

For the sake of simplicity, in these experiments we use a subtask of our 
complete surveillance task. None of the experiments involve obstacles. For the 
first experiment, the agents are placed uniformly along the b e , a g  of a long 
corridor and allowed to  perform one sweep. In the second experiment, the agents 
are placed in a square container in an initially tight Gaussian distribution and 
allowed to diffuse to an asymptotic state. For the h a l  experiment, the agents are 
placed at the beginning of a long corridor once again, and allowed to run for a 
predetermined number of time steps, after which the average speed is measured. 
In the second and third experiments, there is no goal force or wall movement, 
and therefore there is no directed bulk movement (transport) of the swarm. 

8.1 Experiment 1: Velocity Distribution 

The first theoretical prediction for our system is devoted to longitudinal coverage 
and sweep speed via movement. The theory predicts the velocity distribution for 
each of the approaches, AP and KT. It is assumed that fluid flow is in the 
y-direction (downward toward the goal), as in Fig. 2. 

Recall that the AP approach is an implementation of F = ma. Assuming 
Fy = g ,  where g is the magnitude of the goal force, which is constant for all 
particles and is strictly in the goal direction, and assuming m = 1 (which is 
assumed throughout this paper), we have the following derivation (where uy is 
the magnitude of the velocity in the y-direction, and u, is assumed to be 0): 

g - t = v g  

vy = g t  



This shows that the velocity in the direction of the goal is just the force of the 
goal times the amount of time that has elapsed. We set up an experiment using 
this theoretical formula to determine the relative error for our experiments. The 
experiment placed 500 agents in the simulator and terminated in 100 time steps, 
since by this time the agents reach the maximum velocity that can be achieved 
on real robots. The parameter being varied is the goal force. The results are 
plotted in Fig. 5, and the relative error is roughly 1%. 
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Fig. 5.  Relative Error for Goal-Velocity (Prediction 1) 

For KT, a traditional one-sided Couette drives the bulk swarm movement. 
The complete derivation for the velocity profile of a Couette flow can be found 
in [9] (pages 417-420), but here we present a more concise version. 

For steady, 2D flow with no external forces, there is a classical “Governing 
Equation” that predicts the y-direction momentum of the fluid. This Governing 
Equation is: 

where p is the fluid density, v, and vy are the x- and y-components of velocity, 
P is the fluid pressure, and ryy and rxy are’ the normal and shear stresses, 
respectively. We can use this equation for momentum to derive the velocity. 
However, first we need to specialize the equation for our particular situation. 
For Couette flow, the equation becomes: 

a av 
ax ax 0 = -(/AX) 

where /A is the fluid viscosity. Assuming an incompressible, constant temperature 
flow with constant viscosity, this becomes: 



Equation 2 is the Governing Equation for steady, 2D, incompressible, constant 
temperature Couette flow. Integrating twice with respect to x to find vy, we get: 

7Jv = C l Z  + c2 
We can solve for c1 and c2 from the boundary conditions. In particular, at 

the stationary Couette wall (x = 0), v y  = 0, which implies that c2 = 0 from 
Equation 3. At the moving wall (z = D), vv = zlwdl, where D is the Couette 
width and v v a ~ ~  is the velocity of the moving wall, which is in the y-direction 
(toward the god). Then c1 = v,,u/D from Equation 3. 

(3) 

Substituting these values for c1 and c2 back into Equation 3, we get: 

21 X Y -  _ -  
vwall D 

This is a linear profile. 
We set up an experiment to measure the relative error generated by OUT 

simulation, with each particle behaving as if it were part of a one-sided Couette 
flow. Each experiment contained 3,000 particles, and ran for 50,000 time steps. 
When determining the error, we divided the world into seven discrete cells. For 
each cell, we determined the average velocity of the particles located in that cell. 
The relative error was averaged across all cells and plotted in Fig. 5 for eight 
different wall speeds. One can see that the error is below 20%, with a reduction 
in error for K T  as the wall speed is increased. Note that the original algorithms 
from Garcia [lo] also have error between theory and simulation that is slightly 
below 20%. Reasons for this discrepancy between theory and simulation are 
elaborated in the discussion section below. When determining the longitudinal 
coverage via swarm movement, we are able to predict very accurately for both 
algorithms in the simple scenario, except at slow wall speeds for KT. 

8.2 Experiment 2: Spatial Distribution 

For the second experiment, we predict the lateral coverage via the spatial distri- 
bution. For this experiment, there is neither a goal direction nor obstacles. The 
agents’ task is to diffuse throughout the system. The theory for each approach 
in gas formation predicts a uniform distribution throughout the system. For 
the experimental setup, we measured the distance kom the uniform distribution 
once the gas reached an asymptotic state. Therefore, we divided our system into 
discrete cells and counted the number of particles in each cell. Theory predicts 
that the number of particles in each cell should be n/c ,  where n is the total 
number of particles and c is the total number of grid cells that cover our system. 

Our experimental system serves as a simple container to hold a gas. The 
gas should diffuse within the container uniii it reaches mi M ~ T z ~ L ~ o ~ ~ c  st&t.te z c !  
contains equal numbers of particles in each cell. We allowed the system several 
thousand time steps, starting from a tight Gaussian distribution about the center 
of the container, to reach this state and then measured the number of particles in 
each cell. This measurement was averaged over m a y  t h e  steps, since particles 
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Fig. 6. Relative Error for Uniform Distribution (Prediction 2) 

were still moving through the system and diffusion did not imply particles ceased 
to move. Both experiments were the same for AP and KT, and the results can 
be found in Fig. 6. In both cases, the pai-ameter being varied is the number of 
particles. Once again, we are able to predict the spatial distribution with relative 
error less than 20%. 

There is a noticeable downward trend for the relative error in the A P  system 
as more particles are added to the system. Recall that in AP we use forces to 
affect other particles as well as forces from the walls to keep the particles inside 
the simulation. This requires that particles have a desired radius such that when 
another particle enters this radius, it is repelled away. As more particles are 
added to the simulation, the space is filled with particles that are constantly 
pushing each other away and moving into the only formation that will allow 
them all t o  fit, which is a uniform distribution. 

8.3 Experiment. 3: Average Speed 

For the third experiment, we predict the average speed of the particles in the 
system. The average speed of the particles serves as a measure of how well the 
system will be able to achieve complete coverage, because higher speed implies 
greater coverage. The derivation for AP's prediction of average speed begins 
with a theoretical formula for AP system potential energy (PE) from [ l l ] .  This 
theory assumes that the particles start in a cluster of radius 0. There are two 
different situations, depending on the radial extent to which Fma5 dominates 
the force law F = ma. Recall that agents use Fmas when F > F,,,. This 
occurs when $ > F,,, or, equivalently, r 5 = R'. The first situation 
is when F,,, is used only at close distances, Le., when 0 5 R' 5 1.5R. The 
second situation occurs when R' > 1.5R. Here we assume the first situation, Le., 
a low value of G is used such that G 5 Fm,,(1.5R)*, and F,,, is only used at 
close distances. Because we are using AP gas, there is no friction and all forces 
are repulsive. We begin with a two-particle system. In this case, the formula is 
the sum of two integrals. The first represents the force felt by one'particle as it 



approaches another, from a distance of 1.5R to R'. The second is the force F,,, 
that is experienced when 0 5 T 5 R'. Then, using R' as defined above, with r 
the inter-agent distance, we have (V is the standard symbol for PE): 

=FmmR' + G --+- ( l.:R i') 

Now we generalize V to N particles. VN is ow abbreviation for total potential 
energy, and 

Note that all the potential energy transforms into kinetic energy (since there is 
no friction energy dissipation), Le., VN -+ KE. Also, the total kinetic energy, 
KE, is equal to 4 ( ~ ( i ) ) ~ ,  assuming m=l and v(i)  is the speed of particle i. 
This formula for KE is equal to ~ ( T J ' ) ,  where (v2) is the average of the particle 
speeds squared. 
Setting V, = KE, we get: 

N 

VN(N-1) N 
= -(v2) 

2 2 

V ( N -  1) = (272) 

Substituting for V we get 

From [12], we know that the relationship between (v) and (v2) is the following: 

(v) = j ( Q . 2 )  - a2 



where u2 is the variance of the velocity distribution. However, because the vari- 
ance of the velocity distribution is not typically available when making a the- 
oretical prediction, one approximation (which is an upper bound on the true 
theoretical formula because it assumes 0 variance) that we can use is: 
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Using this equation for AP, we ran through the experiments (starting with 
the particles in a tight cluster to match the theory), allowed the gas to reach an 
asymptotic state, and measured the relative error. For each experiment, there 
were 100 agents in the system. The total number of time steps required to reach 
this asymptotic state is different for each value of G since it requires that the 
agents are no longer interacting with each other. This terminating state can be 
found when all the agents have ceased to change their velocity. The parameter 
being varied is the gravitational force, G. As seen in Fig. 7, the error is less than 
6%. Furthermore, if the system designer has a n y  clue as to what variance to 
expect in speeds, the theoretical prediction will be greatly improved. 

In addition to verifying the formula for (w), we also verified the predictive- 
ness of the formula above for (w’), which is precise because it does not involve 
variance. The relative error in this case is less than 0.07% for all values of G, 
which is extremely low. 

We next show how we derive a KT formula for average speed by modify- 
ing the derivation for 3D (w) in [lo] to a 2D formula for (w) (so it applies t o  
our simulation). Assuming a system in thermodynamic equilibrium (since there 
is no bulk transport), with velocity components within the ranges w, + dw, 
and vy + dwy, and k is Boltzmann’s constant, m is the particle mass, w is the 
magnitude of the particle velocity (Le., the particle speed), and T is the initial 
system temperature (a simple, settable system parameter)’, then the probabil- 



ity, f(vz, vy)dv,dvy, that a particle has velocity components in these ranges is 
proportional to e(-mv2/2kT)dvzdvy. In particular, we have: 

f (vz , vy)dvz dv, = Ae(-mu2 /2kT)  dv,dv, = Ae(-mvz2 1' kT) e(-mvv2 / 2 k T )  dv, dv, 

because v2 = vz2 + vy2, and A is a normalization constant that is fixed by the 
requirement that the integral of the probability over all possible states must be 
equal to 1, Le., 

i r n f ( v Z i  vy)dvzdv, = 1 

Therefore, 

To simplify the expression for A, we can use the fact (&om pages 40-46 of [13]) 
that: 

and then do likewise for vy. Therefore: 

where is A. 
Note, however, that f (vz, vy)dZjzdvy is a probability for a velocity vector, but 

we want average speed To get average speed, the math is easier if we go from 
Cartesian to  polar coordinates. In particular, to go from velocity to speed, we 
integrate over all angles. 

In polar coordinates, 27rvdv is the area of extension (annulus) due to Av. In 
other words, the area of an annulus whose inner radius is v and outer radius is 
v + dv is 27rvdv. Then the Maxwell-Boltmann distribution of speeds, f(v)dv, is 
obtained by integrating the velocity distribution, f(vZ, v,)dv,dv,, over all angles 
from 0 to 27r. This integration yields: 

Canceling terms, the right-hand side becomes: 

Because (v) is an expected value, 



From [14](page 609)) we know that sr e-ax2x2dx = i f i a - 4 .  Substituting w 
for x and & for a,  we get: 

Once again, we set up an experiment to measure the actual average speed of 
the particles in the system. We allowed the system to converge to an asymptotic 
state for 50,000 time steps measuring the average speed. For each of the 500 
particles in the system, we found the average speed, (w). This speed was used to 
find the relative error for the system. Since temperature drives changes in speed, 
we varied the temperature. Note that by setting T ,  a system designer can easily 
achieve desired behavior. The results can be found in Fig. 7 for the different 
temperatures. Our ability to predict the average speed of the particles is shown, 
by errors less than 10%. 

9 Theoretical Predictions: Discussion 

We are capable of predicting three different properties of the system, all of which 
affect coverage, with an accuracy of less than 20% error, and most with error 
less than 10%. A 10% error is low for a theoretical prediction. 

By looking at the relative error graphs of both the AP and KT approaches, 
one notices that the AP error is always lower than that of KT (except in the 
case of (v), where the AP formula is a rough approximation). In fact, only 
KT gets 20% errors - A P  errors are always substantially lower than 20%. Our 
rationale for AP having lower errors between theory and simulation is that A P  
uses a deterministic agent-positioning algorithm, whereas K T  uses a stochastic 
algorithm for updating particle positions. Therefore, AP predictions are precise, 
whereas KT predictions are only approximate. Furthermore, as stated in [lo], 
Monte Carlo simulations such as KT need very long runs and huge numbers of 
particles to  acquire enough statistical data to produce accurate (theoretically 
predictable) results. We cannot guarantee this, since we are developing control 
algorithms for robotic swarms with a few to a few thousand robots. Therefore, 
our experiments show a higher error than desired for a Monte Carlo method but 
they are realistic for real-world swarms. 

In conclusion, there appears to be a tradeoff. AP systems are more predictable 
- both on the macroscopic swarm level and on the level of individual agents. 
Therefore, if swarm predictability is a higher priority, then AP is preferable. On 
the other hand, if it is important that individual agents not be predictable (e.g., 
to an enemy), then KT is preferable. 

10 Future Work 

The next step is to  develop a theory for the full surveillance task. Once this 
theory is complete, experiments need to be run to test all approaches: AP, KT, 



and various AP/KT hybrids. We plan to run numerous experiments to measure 
coverage versus time and determine which of the algorithms outperforms the 
others. Once that is complete, the next step is to port these approaches to 
our laboratory mobile robots. The solid AP approach has already been ported. 
Transitioning to Ap gas wi l l  be straightforward. We will need to determine, using 
a more realistic robot simulator, how difficult (or easy) it will be to  port KT to 
the actual robots. 
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